Exploratory analysis of multivariate drill core time series measurements
نویسندگان
چکیده
Demand for mineral resources is increasing, necessitating exploitation of lower grade and more heterogeneous orebodies. The high variability inherent in such orebodies leads to an increase the cost, complexity environmental footprint associated with mining processing. Enhanced knowledge orebody characteristics thus vital companies optimize profitability. We present a pilot study investigate prediction geometallurgical variables from drill sensor data. A comparison made performance multilayer perceptron (MLP) multiple linear regression models (MLR) predicting variable. This based on simulated data that are physically realistic, having been derived fitted one available core. terms mean standard deviation (over repeated samples population) absolute error, root square coefficient determination. best performing model depends form response variable sample size. measures tends be higher MLP, MLR appears offer consistent test cases considered. References R. M. Balabin S. V. Smirnov. Interpolation extrapolation problems multivariate analytical chemistry: Benchmarking robustness near-infrared (NIR) spectroscopy data”. Analyst 137.7 (2012), pp. 1604–1610. doi: 10.1039/c2an15972d C. Bishop. Pattern recognition machine learning. Springer, 2006. url: https://link.springer.com/book/9780387310732 J. B. Boisvert, E. Rossi, K. Ehrig, Deutsch. Geometallurgical modeling at Olympic dam mine, South Australia”. Math. Geosci. 45 (2013), 901–925. 10.1007/s11004-013-9462-5 T. Bollerslev. Generalized autoregressive conditional heteroskedasticity”. Economet. 31.3 (1986), 307–327. 10.1016/0304-4076(86)90063-1 Both Dimitrakopoulos. Applied learning throughput prediction—A case using production Tropicana Gold Mining Complex”. Minerals 11.11 (2021), p. 1257. 10.3390/min11111257 Chen G. Li. Tsallis wavelet entropy its application power signal analysis”. Entropy 16.6 (2014), 3009–3025. 10.3390/e16063009 Coward, Vann, Dunham, Stewart. primary-response framework variables”. Seventh international geology conference. 2009, 109–113. https://www.ausimm.com/publications/conference->url: https://www.ausimm.com/publications/conference- proceedings/seventh-international-mining-geology- conference-2009/the-primary-response-framework-for- geometallurgical-variables/ A. Davis N. Christensen. Derivative analysis layer selection geophysical borehole logs”. Comput. 60 34–40. 10.1016/j.cageo.2013.06.015 Dritsaki. An empirical evaluation GARCH volatility modeling: Evidence Stockholm stock exchange”. Fin. 7.2 (2017), 366–390. 10.4236/jmf.2017.72020 F. Engle Modelling persistence variances”. Econ. Rev. 5.1 1–50. 10.1080/07474938608800095 Hadi Ling. Some cautionary notes use principal components regression”. Am. Statistician 52.4 (1998), 15–19. 10.2307/2685559 Hunt, Kojovic, Berry. Estimating comminution indices ore mineralogy, chemistry core logging”. Second AusIMM International Geometallurgy Conference (GeoMet) 2013. 2013, 173–176. http://ecite.utas.edu.au/89773>url: http://ecite.utas.edu.au/89773 C210). Hyndman, Y. Kang, P. Montero-Manso, Talagala, Wang, Yang, O’Hara-Wild, Ben Taieb, H. Cao, D. Lake, Laptev, Moorman. tsfeatures: Time series feature extraction. R package version 1.0.2. 2020. https://CRAN.R-project.org/package=tsfeatures>url: https://CRAN.R-project.org/package=tsfeatures C222). L. Johnson, Browning, Pendock. Hyperspectral imaging applications geometallurgy: Utilizing blast hole mineralogy predict Au-Cu recovery Phoenix Nevada”. Geol. 114.8 (2019), 1481–1494. 10.5382/econgeo.4684 Martin Morris. overview statistical process control continuous batch monitoring”. Trans. Inst. Meas. Control 18.1 (1996), 51–60. 10.1177/014233129601800107 Sepulveda, Dowd, Xu, Addo. Multivariate modelling by projection pursuit”. 49.1 121–143. 10.1007/s11004-016-9660-z Webb, Cooper, Ashwal. Wavelet investigation density susceptibility Bellevue Moordkopje borehole, Bushveld Complex, Africa”. SEG Technical Program Expanded Abstracts 2008. Society Exploration Geophysicists, 2008, 1167–1171. 10.1190/1.3059129 Zuo. Identifying geochemical anomalies Cu Pb–Zn skarn mineralization component spectrum–area fractal Gangdese Belt, Tibet (China)”. Geochem. Explor. 111.1-2 (2011), 13–22. 10.1016/J.GEXPLO.2011.06.012
منابع مشابه
An Exploratory Analysis of Multiple Multivariate Time Series
Our aim is to extend standard principal component analysis for non-time series data to explore and highlight the main structure of multiple sets of multivariate time series. To this end, standard variancecovariance matrices are generalized to lagged cross-autocorrelation matrices. The methodology produces principal component time series, which can be analysed in the usual way on a principal com...
متن کاملa time-series analysis of the demand for life insurance in iran
با توجه به تجزیه و تحلیل داده ها ما دریافتیم که سطح درامد و تعداد نمایندگیها باتقاضای بیمه عمر رابطه مستقیم دارند و نرخ بهره و بار تکفل با تقاضای بیمه عمر رابطه عکس دارند
Exploratory Spectral Analysis of Hydrological Time Series
Current methods of estimation of the univariate spectral density are reviewed and some improvements are suggested. It is suggested that spectral analysis may perhaps be best thought of as another exploratory data analysis (EDA) tool which complements rather than competes with the popular ARIMA model building approach. A new diagnostic check for ARMA model adequacy based on the nonparametric spe...
متن کاملOn Canonical Analysis of Multivariate Time Series
Canonical correlation analysis has been widely used in the literature to identify the underlying structure of a multivariate linear time series. Most of the studies assume that the innovations to the multivariate system are Gaussian. On the other hand, there are many applications in which the normality assumption is either questionable or clearly inadequate. For example, most empirical time ser...
متن کاملMultivariate Probit Analysis of Binary Time Series
SUMMARY The development of adequate models for binary time series data with covariate adjustment has been an active research area in the last years. In the case, where interest is focused on marginal and association parameters, generalized estimating equations (GEE) (see for example Lipsitz, Laird and Harrington (1991) and Liang, Zeger and Qaqish (1992)) and likelihood (see for example Fitzmaur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Australian & New Zealand industrial and applied mathematics journal
سال: 2023
ISSN: ['1445-8810']
DOI: https://doi.org/10.21914/anziamj.v63.17192